'
}
}
]
});
pp.show();
}
function createAboutWindow()
{
var pp = Ext.create('Ext.Window',
{
layout : 'absolute',
width : 505,
height : 300,
title: 'Mathstools',
id: 'panelHelp',
animCollapse : true,
collapsible : true,
closable : true,
hidden: false,
renderTo: Ext.getBody(),
bodyStyle: 'padding: 8px; overflow: auto; width: 480px; ',
items: [
{
xtype: 'box',
id: 'helpContainer',
autoEl: {
tag: 'div',
style: 'text-align: center; color: darkRed; font-weight: bold;',
html: 'Mathstools About us'
}
}
]
, listeners: {
'render': function(panel) {
var url = '/index.php/section/crud?crudid=67';
$('#helpContainer').load(url, null ,
function (responseText, textStatus, XMLHttpRequest)
{
});
}
}
});
pp.show();
}
function createHelpWindow(idParent, ttt, uuu, isHelp)
{
var pp = Ext.create('Ext.Window',
{
layout : 'absolute',
width : 890,
height : 550,
title: ttt,
id: 'panelHelp',
animCollapse : true,
collapsible : true,
closable : true,
hidden: false,
renderTo: Ext.getBody(),
bodyStyle: 'padding: 8px; overflow: auto;',
items: [
{
xtype: 'box',
id: 'helpContainer1',
autoEl: {
tag: 'div',
style: 'text-align: center; color: darkRed; font-weight: bold;',
html: '
'
}
},
{
xtype: 'box',
id: 'helpContainer',
autoEl: {
tag: 'div',
style: 'top: 100px; border: 2px solid #000000; border-radius: 15px 15px 15px 15px; position: relative !important; text-align: left; font-weight: bold; padding-right: 10px;',
styleCls: 'definitionDiv',
styleClass: 'definitionDiv',
html: ttt
}
}
]
, listeners: {
'render': function(panel) {
var url =uuu;
$('#helpContainer').load(url, null ,
function (responseText, textStatus, XMLHttpRequest)
{
/*alert('statuys' + textStatus);*/
});
}
}
});
pp.show();
}
function addFeedbackPanel(panel, app)
{
var pp = Ext.create('Ext.panel.Panel',
{
width: 485,
title: 'Send us your Feedback',
id: 'panelFeedback',
bodyStyle: 'padding: 8px;',
x: 200,
y: 0,
items: [
{
xtype: 'box',
autoEl: {
tag: 'div',
style: 'text-align: center; color: darkRed; font-weight: bold;',
html: 'Yours feedbacks are wellcome'
}
},
{
xtype: 'box',
autoEl: {
tag: 'div',
style: 'text-align: left; padding: 5px; padding-top: 10px; padding-bottom: 10px; line-height: 17px',
html: "Did you like our applications?Have any suggestions?Got some text that you would like post it on www.mathstools.com? "
}
},
{
xtype: 'box',
autoEl: {
tag: 'div',
style: 'text-align: left; padding: 5px; padding-top: 10px; padding-bottom: 10px; line-height: 17px',
//html: 'Still not registered?
Register here'
html: 'Hate messages or messages that do not contribute anything will not be published and nor answered. Check our
Policy here'
}
},
{
xtype: 'textfield',
width: 570,
heigth: 190,
fieldLabel: 'Name',
labelWidth: 100,
value: '',
x: 5,
y: 10,
inputId: 'name'
},
{
xtype: 'splitter' // A splitter between the two child items
},
{
xtype: 'textfield',
width: 570,
heigth: 190,
fieldLabel: 'Email',
labelWidth: 100,
value: '',
x: 5,
y: -2,
inputId: 'email'
},
{
xtype: 'splitter' // A splitter between the two child items
},
{
xtype: 'textarea',
heigth: 150,
fieldLabel: 'Your Text here',
labelWidth: 100,
width: 570,
rows: 7,
value: '',
x: 5,
y: -2,
inputId: 'text'
},
{
xtype: 'button',
text: 'Clear Form',
style: {'float': 'left', 'margin-left': '20px;'},
handler: function(){
cleanForm();
}
},
{
xtype: 'button',
styleHtmlCls: 'button',
text: 'Send',
style: {'float': 'right', 'margin-right': '20px;'},
handler: function(){
sendFeedBack(app);
}
}
/*
,
{
xtype: 'button',
styleHtmlCls: 'button',
text: 'Register here',
style: {'float': 'right', 'margin-right': '20px;'},
handler: function(){
goTo('/section/forum/L2ZvcnVtL3VjcC5waHAXXXbW9kZT1yZWdpc3Rlcg%3D%3D');
}
}
*/
]
});
panel.add(pp);
}
function generateSolutionImg(result, title)
{
$('#panelWidget').remove();
var pp = Ext.create('Ext.Window',
{
layout : 'absolute',
width : 505,
height : 300,
title: title,
id: 'panelWidget',
animCollapse : true,
collapsible : true,
closable : true,
hidden: false,
renderTo: Ext.getBody(),
bodyStyle: 'padding: 8px; overflow: auto;',
items: [
{
xtype: 'box',
style: 'text-align: center;',
autoEl: {
tag: 'div',
style: 'display: block; float: none; text-align: center ! important; width: 100%; clear: both;',
html: '
'
}
},
{
xtype: 'box',
id: 'widgetHelpContainer',
autoEl: {
tag: 'div',
style: 'text-align: left; width: 100%; float: none; clear: both; margin-top: 30px;',
html: result
}
}
]
});
pp.show();
}
//-->
The Functions Plotter
The Functions Plotter is an application to make graphically representation of functions or parameterized curves in the plane R2. Also, The Functions Plotter calculates line integrals forf two-variabled scalar or vectorial functions.
App Input and output
Enter the function to plot as follows:
1) If function to plot is on the form y = f(x), ie a function with 1-variabled real values, enter at the text box labeled x(t) the expression x and enter the function expression
at textbox labeled with y(t), examples
if f(x,y) = e2x -> enter e^(2*x)
if f(x,y) = sin [e(2x)] -> enter sin(e^(2*x))
2) If function to plot is on the form (x(t), y(t), enters at box labeled x(t) function expression x( t) and the expresion y(t) at text box labeled with y(t), examples
if (x(t), y(t)) = (cos t, sin t) -> enter cos( t) at text box labeled as x(t) and sin( t) at text box labeled as y(t)
if (x(t), y(t)) = (e-t, 2t2) -> enter e^(-t) at text box labeled as x(t) and 2*t^2 at text box labeled as y(t)
3)Enter the interval at which the function is represented in "From" to the lower limit and "to" the upper limit.
4)Click the menu option "Show Graph" and appears after seconds the function graph representarion in the range introduced in the previous points.
5) To calculate a scalar line intetgral , click on the link labeled "Line Integral Scale Function", then a box will appear where you can enter a two variabled function
f(x, y), Some examples are
If f(x,y) = e2xy -> enter e^(2*x*y)
If f(x,y) = sin e(2xy) -> enter sin(e^(2*x*y))
if you click on the link "Integrated Line" will be the numerical value obtained from the integral.
6) if you click on the li intetgral To calculate a vector line, click on the link labeled "Line Integral of Vector Function", then will appear two text boxes in which you can enter a vectorial two variabled function. Some examples are those of the previous point
if you click on the link "Integrated Vectorial Line" will appear the numerical value obtained from the integral.
Final comments
Plotter Functions perform calculations with 16 decimal digits accuracy limit, this is more than enough because the estimated truncation error in the calculations is always greater than K 1.0e.-16.
Functions Plotter does not require installation of any kind, just a browser with javascript support
if (!function_exists("utf8_encode")){
function utf8_encode($var){
return is_null($var) ? false : $var;
}
}
?>